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SUMMARY
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The basic theory of space-charge flow is described_ and three gen-

eral methods of solution are discussed. Specific space-charge-flow ge-

ometries are described in detail; these include flow between coaxial

cylinders, concentric spheres_ coaxial cones_ hyperbolic flow_ flow be-

tween inclined planes, and circular flow. Since all the solutions dis-

cussed are for space-charge-limited flow 3 a discussion of partial space-

charge flow is presented. The Pierce method of electrode design is de-

scribed, and some practical limitations of this method are discussed.

Electrode shapes for various space-charge flows are shown.

INTRODUCTION

The performance and design requirements of electrostatic rocket

engines have brought a new emphasis to the theory of space-charge flow.

Considerable reductions in engine size and substantial improvement in

engine efficiency may be gained by the use of ion and charged-particle

accelerators operating with current densities at or near the space-

charge limit. Such high current densities bring about definite space-

charge effects_ so that Poisson's equation must be used to describe the

potential distribution in the engine accelerator. In addition to the

requirement of high current density_ the electrostatic rocket engine

must be capable of operating for very long times, of the order of years

for interplanetary space missions. Such long-duration operation re-

quires near-perfect "ion optics" to keep electrode sputtering erosion

to reasonable limits. Since the ions_ or charged particles, are accel-

erated to kinetic energies in the range from a few thousand to hundreds

of thousands of electron volts, each ion striking an electrode may

sputter away several electrode atoms. For these reasons, some estimates

of the degree of perfection of ion optics place an upper limit of ion

impingement of less than 0.01 to 0. i percent of the total ion beam to

keep erosion to a reasonable level.
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The space-charge-flow problem in electrostatic rocket engines is
characterized by the necessity for the ions, or charged particles, to
leave the engine permanently through an open exhaust aperture, as shown
in sketch (a):
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Since the ion source is at a potential considerably higher (or lower,

for negative ions) than the potential of free space, the equipotential

lines in the accelerator will tend to bow_ or bulge, out of the exhaust

aperture. This aperture effect not only reduces the current carrying

capacity of the accelerator, but also introduces another complicating

boundary condition on the space-charge-flow equations.

The complexities of the space-charge flow in electrostatic rocket

engines indicate that complete analytical design of space-charge-flow

accelerators will be very difficult. For this reason, recourse has been

made to analog or empirical methods (i.e., experimental "cut-and-try").

Not only are these methods inadequate for extrapolation or scaling of

engine designs_ but in addition they do not offer sufficient basic under-

standing of space-charge flow to allow positive prediction and evaluation

of the effects of configuration changes in design optimization studies.

It is evident that a convenient_ universal method for the analytic

solution of the space-charge-flow problem would be of great value in the

design of electrostatic rocket engines. The survey of existing literature

on space-charge flow reported herein has yielded no completely universal

analytic method, but some progress has been made in that direction.



The first section of this report is devoted to a discussion of the
three methods of solution that have been used to date for space-charge-
flow problems. The remainder of the section on space-charge-flow theory
is a compilation of analytic solutions for specific space-charge-flow
geometries found in the literature and also includes a calculation of
the flow between coaxial cones that was not previously available.

Since the analytic solutions to space-charge flow usually assume
that the flow fills all space, it is necessary to take a segmentof this
flow and to provide electrodes external to the ion beamto force the flow
to conform to the theoretical pattern. The second section of this report
is devoted to the problem of electrode design. The method of Pierce is
described and is applied to a numberof space-charge-flow geometries to
obtain electrode shapes. Someof these shapes are accurately recomputed
using techniques found in the literature, and others appear not to have
been computedpreviously. Somepractical limitations to the application
of space-charge flow theory and the Pierce method of electrode design
are discussed.

The parameters of the various space-charge flows examined in this
report maybe used to determine the theoretical performance of electro-
static rocket engines. An analysis is madein reference i in which the
various space-charge flows are comparedin terms of relative engine per-
formance.

The work described in this report was carried out as part of the
electrostatic propulsion research program of the NASALewis Research
Center.

SPACE-CHARGE-FLOWTHEORY

In the study of the performance of ion engines the analysis of
space-charge flow is very important. Since the early studies of Child
(1911, ref. 2) and Langmuir (1915, ref. S), who solved the problem of
space-charge-limited flow between parallel plates more than half a cen-
tury ago_ there have appeared extensive publications on space-charge ef-
fects in certain new geometries. Most of the early analyses (refs. 2
to 5) have been concerned with one-dimensional cases_ and it has been
only in recent years that two- and three-dimensional cases were solved
or solutions were suggested (refs. 6 to IS).

In most ion engines_ ions moveas a very nearly continuous fluid in
an electrostatic field in which the magnetic force is negligible. The
flow of ions is assumedto form a system of curves (streamlines) filling
s portion of space such that the velocity is a single-valued function of
position.



The fundamental differential equations governing steady-state space-
charge flow are:

Poisson's equation:

c
o

I)

Equation of motion:

mv = q_ 2)

Conservation of charge:

V" j =0 3)

(Note that @ = '_o - _')

It is mathematically convenient to assume that the flow is space-

charge limited. In this case the velocity and electric field will both

be zero on the emitting surface. Under these conditions it can readily

be sho_m (ref. 9) that the flow will be irrotational; that is,

v x _ = o (4)

In this case_ the velocity can be expressed as the gradient of a
scalar action function:

_=_

Combining equation (5) with the vector identity

(5)

v = " V)_ yields

4
v = (s_. v)_ (6)

Application of equation ($) to the identity

i
('_ • v)_ = -_ v(_) z - _:w x (v x _)

give s

-_ i 2
v = _ v(vw) (v)



Substitution for v from equation (2) yields

(s)

Hence,

(9)

vhere the constant of integration is included by letting _ = _o - _"

The five equations used to formulate space-charge-flow problems are:

Hamilton- Jacobi equation:

(_)z = (_)_ (9)

Poisson's equation:

V ¢ : -p- (1)
6

0

Total ion energy:

i z (lO)
my - q_ : 0

Conservation of charge:

Vector current density:

v" 7 : o (3)

__> -->

j = 0v (ll)

Analytical Methods

Historically the first analytical solutions of the space-charge-flow

problem were for particular cases of rectilinear flow between specified

equipotential surfaces. These are flow between infinite planes (refs. 2

and 5), flow between coaxial cylinders (refs. S and 4), and flow between

concentric spheres (ref. S). One of the first attempts at a general so-

lution of the space-charge-flow equations was made by Spangenberg (ref. 6)

following his formulation of the general equations in terms of the action



function• His multidimensional analysis yields a partial differential
equation in terms of the action function_ _rhich is muchtoo unwieldy
for exact solution•

In 1949 Meltzer (ref. 7) introduced a unique approach to the solu-
tion of space-charge-flow problems. By his methodthe space-charge-
flow parameters are expressed in terms of the acceleration and velocity.
Meltzer showsthat there are two conditions necessary for a space-charge
solution to exist_ namely,

v × v : o (lZ)

v" (_v- V) : o (13)

Using the relation $ = (_ • 7)V to obtain the acceleration from a pre-

viously assumed velocity, v and 9 are tested in equations (12)

and (IS). If they satisfy (12) and (15), they define a type of space-

charge flow whose parameters are as follows:

(l_)

: v. as (16)

_ : _oV(V- _) (17)

This method leaves one big equation unanswered. How may a velocity

function be found that will satisfy equations (12) and (15)? The search

for an answer to this question led Meltzer (ref. ii) and later Rosenblatt

(ref. 12) to develop the trajectory action function method, which is more

readily applicable to space-charge-flow problems than any previous

method•

In the action function method of Meltzer and Rosenblatt it is as-

sumed that the flow of charged particles is !aminar_ and that an orthog-

onal curvilinear coordinate system

_(x,y,_) (lSa)



(x,y,z) (lab)

can be found such that the ion trajectories are completely described by

variation of the parameters _ and _ (i.e., D = const, and _ = const.

specify a particular trajectory). Then the orthogonal surfaces

= constant will be surfaces of constant action, and the Hamilton-

Jacobi equation (9) becomes

(ms)

where hI is the scale factor corresponding to the coordinate _. Rosen-

blatt shows that if a function P is defined such that

_= h_ (2O

the general differential equation for space-charge flow can be _rritten

aT + s = X(S,_) (Zl

_,;here

h2h S
C - (22

(2s)

h2h5 _q

The differential equations for several kno_m space-charge-flow cases are

derivable from equations (81), (82), (83), and (24). The variables (,

_, and {, the scale factors, and equations (21) to (24) are tabulated

for certain of these cases in table I. It is still necessa}7, however_

to apply the classical techniques to obtain final solutions.



Particular Solutions of Space-ChargeFlow

It is of interest here to discuss particular solutions of the differ-
ential equations listed in table I and to express these solutions in
nomographic form. In addition to these previously listed space-charge-
flo_r solutions_ there are two other kno_,_analytic space-charge flows in-
cluded in the follo_ring sections.

Rectilinear flow between infinite plane electrodes. - Sketch (b)

illustrates rectilinear flow between plane electrodes.

Equipotentials -_t
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(b)

In 1911_ Child (ref. 2) published the solution to this case. From his

analysis he obtained what is now known as the Child-Langmuir space-
charge lair:

J = _ eo 2
x

(ss)

where _0 is the potential at x = O. When the constants are written:
;O

5. 1/2-_ c o = 4:67×10 -6 A-



where A is the molecular weight per ionic charge, equation (Z5) be-

come s

j = s. eT×lO -8 A-l/2(% _  )5/2x-2 (s6)

A nomogram relating j, (_o - _O), A, and x is shown in figure i. The

velocity v as sho_m in equation (i0) is obtained for this and each

subsequent case from the nomogram in figure 2.

Rectilinear flow between coaxial cylinders is shown in sketch (c).

T_ = o

_quipot en_i_°te nt ial sJ_'__

Diverging flow Converging flow

(c)

In 1915 a paper by Langmuir (ref. 5) was published that contained an

approximate solution for this type of flow. The current density and

current per unit length may be _itten

j = 5._67×10 -S A-1/2(_ ° - _)3/2r-2@-2 (27)

J - 2zrj = 5.¢5×10 -7 A-1/2(@o - _)3/2(r52)-1Z
(2s)

where

of r

Do is the potential at ro and _ is a nondimensional function

expressed as a power series in in(r/ro).

In 1925 an improved solution by Langmuir and Blodgett (ref. 4) was

published. T_ro series representations for _ were given. One of these

most useful for electrode design is:



i0

(r )lJ2[ 2: n r + 0. i in + 0.0167 n
+ " t (29)

The Langmuir function _2 is plotted as s function of r/r o in fig-

ure S and is tabulated in table If. Note that B2 for r/r o > i is

for divergent flow (from the inner to the outer cylinder), and _2 for

r/r o < i is for convergent flow. The numbers in table II were computed

from equation (29) using all 14 coefficients given by Langmuir in refer-

ence 4. These numbers agree well _Tith those sho_.m by Langmuir. Nomo-

grams relating J/Z, (_o - _), A, r, r/ro, and v are sho_._ in figures

2, 4, and 5.

Rectilinear flow between concentric spheres. - Sketch C also depicts

rectilinear flow between concentric spheres. The solution for this case,

due to Langmuir and Blodgett (ref. 5), was published in 1924. The cur-

rent density and total current may be _Titten

j = 5.467xzo-S i-l/z(% _ _)S/Zr-Z_-z ( 5O

j : %_r2j = 6.$7X10-7 A-1/2(_ ° _ @)5/2_-2 ( 51

where _ is a nondimensiona! function of r expressed as the power
series

0_= in r - 0.5 n
+ 0.075(in r_) 5 - O. O14(in +o) 4 +

The Langmuir function _2 is plotted as a function of r/r o in fig-

ure 6 and is tabulated in table Ill. As in the cylindrical flow case,

2 r/r o > sponds to diverging flow and 2 for r/r o < ifor I corre

to converging flow. The numbers in table IIl were computed from equa-

tion (52) and agree well with Langmuir's data.

Nomograms relating J' (_o - @)' A, r/to, and v are shown in

figures 2, 7, and 8.
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Circular flow. - Circular flow is depicted in sketch (d).

(a)

_rEquipotentials

i 1

ep = cpo

The solution to this case is given by Meltzer in reference ii. The cur-

rent density may be written

j = 1.23×i0-7 A-i/2(q0 o - q0)3/2(r sin _) -2 (35)

where _ is the potential at (r,@) and j is the current density in

the current sheet r. Figure 9 is a nomogram relating j, (Do - _), A,

r, and e. The velocity can be obtained from figure 2. This flow has

several peculiarities that are not evident from equation (33). Since

these are discussed in reference Ii, they will only be mentioned here.

First of all, the ions accelerate through an angle of 60° and then de-

celerate, reaching zero velocity at 120 °. Since the equipotentials do

not lie along a radial plane except at e = 0° and a = 120 °, the ve-

locity varies along any radial plane in the flow. Fina!ly_ along any

radial plane the current density j is proportional to i/r 5. This

poses a very difficult problem in ionizer design.

If a beam is considered that is bounded by an inner trajectory of

radius a and an outer trajectory of radius b, the current per unit

length may be written

This equation is used in the electrode design section.
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Hyperbolic flow. - Hyperbolic flow is shown in the following sketch:

Y

jff-Equipotentials
\/

(e)

The solution to this case was obtained by Meltzer (ref. 7) and later by

Rosenblatt (ref. 12). The space-charge-limited current density may be

written:

j : _.92X10 -7 A-1/2(9 ° - _)5/2r-2 (s5)

where 9 is the potential at radius r. This equation is expressed in

terms of a nomogram in figure i0. It is interesting to note that J

along any given trajectory is a function only of the radial component of

the trajectory. If the bounding trajectory is defined by the equation

y = (R/x), the current per unit length for one quadrant may be written

A-1/%,Iq o (x_T_= ,_._xlO_7 _ q_)3/2 2 +_} (56)

where Z is measured normal to the (x,y) plane.
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Flow between two inclined planar electrodes. - The configuration of

two inclined planar electrodes presents a very interesting problem of

space-charge flow applicable to ion engine design.

Walker (ref. 9) solved this problem by first assuming negligible

space charge. In this case the _otentia] distribution between two in-

clined planar electrodes is known and can be written:

cPo
= -- 0 (sT)

By substituting ($7) into Hamilton-Jacobi equation (9) in polar coordi-

nates, equation (9) then becomes

/_W_ 2 (_ _W'_2 2q (Po 0 (._8)

Because the right side of equation ($8) is independent of r_ so must be

also the left side of (38). Therefore, Walker (ref. 9) sought a solution

of the action function in the form

W = rz(@) (59)

By substituting ($9) into (SS) the Hamilton-Jacobi equation becomes

z2 + z'2 = (--_-_)_
(¢o)

_w i Sw
where z = _r and z' = --r_-e"

the form of a power series.

Equation (%0) was solved by Walker in

The components of velocity are then given by

_W
vr =_-_ = z

l _w
V_ =_--_ = Z v

_ence_

dr z
dO

r z'
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and after integration the trajectory equation is obtained:

)zZr - ex_p --r d

r o

(4l)

where (ro, O ) is the initial point of a particular trajectory, and (r,e)

are the coordinates of the remainder of that particular trajectory

(sketch (f)).

_- Equipotentials

/ \ /f

I. / _ _..__._--...-_ = o

Equipotentials-b//.. .. __."

\\ I / //

r_ \_ / /

_=2o_ A_///

ro

(f)

The angle between the trajectory and the normal to equipotential is

given by

dr z
tan _ = -- = (42)r d@ %-T

In the case of space-charge flow between two inclined planar electrodes_
Walker assumed an action function in the form

w = rg(e) (¢5)

By substituting (45) into Hamilton-Jacobi equation (9), equation (9) be-

come s

g2 + g,2 = (2__m)¢ (¢¢)
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Now the left side of equation (_) is a function of @ only_ and,

hence_ @ must be a function of _ only.

By expressing Poisson's equation (i) in polar coordinates, it

follows that

£o_"

r 2

The components of vector current density are

Eo@"g

Jr- 2
r

(4S

and

By substituting these components into the equation of conservation of

charge (eq. (5))

_Jr i i _J$

V • J = _-_--+ --rJr + --r_ = 0

Walker obtained

By eliminating

order differential equation in

i (¢,,g,)_ ¢"s = o (_G
dO

@ from equations (_4) and (_6) an ordinary fourth-

g is obtained in the form

+ + _ - g = o (_7
g'

Any solution of this equation defines a possible motion.

similar to that in the space-charge-free case the trajectory equation

is given by

r__ = exp d
r o

(48

In a fashion
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and the angle between the trajectory and the normal to the equipotential
is given by

dr gtan _ - - (49)
r de g'

Ivey (ref. i0) made a detailed calculation of this problem and his re-

sults of equations (41), (42), (48), and (49) are presented in figures
ii and 12.

The space-charge-limited current density of the emitter as calculated
in reference I0 is

j = -_ c o r_ F(m) (50)
o

where F(_) could be defined as a perveance function depending on the

magnitude of the angle _ sho_n in sketch (f). At any place in the

flow the current density may be _itten

Substitution into equation (50) yields

j = _ co r2 F(e
(5l)

where @ is the potential difference between e = 0 and e_ and the

range of e is 0 < e < m. A nomogram of equation (51) is shown in

4
_Em_ = 5.467×i0 -S A-I/2 for singly charged ions.figure i5 where _ So

The normalized potential distribution for space-charge-limited flow as

a function of normalized angle e/m is shown in figure I_ for several

values of m. It is interesting to note that for m = 0 the potential

distribution is that for two parallel planes and_ further_ that the po-

tential distribution for m ( _/2 is not greatly different from that

for m = O.

Flow between two coaxial right circular conical electrodes whose

vertexes coincide. - In this configuration it is also assumed_ as in the

case of the flow between two inclined planar electrodes_ that the end
effects can be taken care of in all directions. Walker has outlined the
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procedure for the solution of this problem for the space-charge flow
(see sketch (g)). The authors of this paper assumedan action function
in the form

w : r • s(_) (s2)

q_=O q_ = q)o

i /, //
\\ I/

_o _=0
/

(g)

Kino and Harker (ref. i5) in their analysis used a similar form of action

function W = rn • s(e) and investigated cases for n < i. Some of the

cases investigated in their paper show beam trajectories that pass through

potential minimums (accelerate-decelerate system). In the case of

W = r • s(9), investigated herein, the beam trajectories are continuously

accelerated (accelerate system).

By substituting (52) into Hamilton-Jacobi equation (9) this equa-

tion becomes

s2 + s,2= (2m__)m (ss)

As in the case of the flow between two inclined planes, it was deduced

that _ has to be a function of _ only.
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By expressing Poisson's equation (i in spherical polar coordinates_it follows that

0 = r2\tan @_ q0" (5_)

The components of the vector current density are

and

CoSfo' + ')Jr - 2 _tan 0 _'
F

- _°s'f--_- _'IJ_ ---_--_t_n_ +

(55)

The conservation of current equation (S) in spherical polar coordinates
is

Ib _JrV" j = + r_+
J0 z _Je_

r tan e + _7@--/ = 0 (56)

Substituting equation (55) into (56) gives then the condition for which

div j is zero_ namely_ when

cot e(2qo"s' + 9's') + cp"'s' + _"s" - qo's' = 0 (57)

By eliminating _ from equations (53) and (57) a fourth-order nonlinear

ordinary differential equation in s is obtained in the form

2( s" )]s'"' =- cot e s'" + s') + s 7 (s" + s s_ s'" + 2s '

1 S ,,T) 3S"
+ T - (ss)s

s

Equation (58) was solved numerically for s(0) and s'(@), which were

then used for determination of ion trajectories.

The components of velocity are

_W

vr =_r = s
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and

l Sw
v_ - - s _r _8

and

dr s
--= d_
r s'

and by integration

r__ = exp s
ro TT d (59)

The angle between the trajectories and the normals to the equipotentials

is given by

a_ s (6o)
tan T r d_ s '

The current density is given by

_.2 .2lJl : Or + J@ (61)

To obtain more accurate values of Jo_ the current density at the emitter,

the current density Ja at the collector was first calculated from

equation (61). The current density at the emitter was then calculated

from

Jo = Sa = _ Co -7 s(_2 - ml)
r o

(62)

The solutions of ion trajectories and the angle between the trajectories

and the normals to the equipotentials are presented in figures 15 and 16,

respectively. A nomogram of equation (62) is given in figure 17. ff_e

normalized potential distribution as a function of normalized angle

(8 - Ctl)/(_ ? - _i ) for several angles (_2 - _i ) is shown in figure iS.
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Partial Space-ChargeFlow

As early as 1920, Jaffe considered the plane diode under partial
space-charge conditions where the current is less than space-charge
limited, sometimescalled temperature or flow-rate-limited condition,
(ref. i¢). Since that time there have been several papers on this sub-
ject, tyro of which will be noted here. Brubaker (ref. iS) and Ivey
(ref. 16) derived the equations governing the flow of electrons or ions
under partial space-charge conditions independently at about the same
time. Brubaker madeuse of normalized variables representing current
density, voltage; distance_ and emitter field_ so that these variables
range between zero and unity as the current density varies from zero to
the space-charge-limited value. He defined the normalized variables as

Current density _ j

J = Space-charge-limited current density Js

V
Voltage at distance X from emitter x

Voltage at collector, at distance X a from emitter V a

= Distance from emitter _ X
Emitter-collector spacing X a

m,tte Y = Gradient at emitter in absence of space charge = X=O

The previously mentioned assumption still holds, namely; zero velocity

of the particles at the emitter.

The potential distribution and electric field are fully defined by

equations (63) and (64):

1_Q_3/2 _ -j2y2)= 27(V_2_ _f-3) (G3)

aV_ 27V3 - 32-3_

c_ 2772_ 2Q_7l/2
(64)

The relation between the current density j and the electric field at

the emitter is given by equation (63). By setting _ = X = i the con-

dition at the collector is given by

-:0:-_+i (1 %3_)(3_ + 1) 1/2 (65)
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Equation (65) is plotted in figure 19. It is interesting to see that
the emitter field rises rapidly as the current is decreased from space-
charge-limited values. Decreasing the current i0 percent from the space-
charge-limited value causes the field to increase from zero to more than
25 percent of its value in the absence of space charge.

If_equation (65) is solved for specific values of the ele_tri_
field y and the current density j or, in other words, if ¥ = ¥o
and 0 = Jo are held constant, equation (65) gives a relation between

and _. By substituting T o and Jo into (65) and rearranging terms,

equation (65) becomes

(66)

Equation (66) is plotted in figure 20. It is seen that the maximum de-

p_ression of the space potential for space-charge-limited conditions

(Jo = i) occurs at _ = 27/64 where the normalized slope is unity. By

using the data obtained in figures 19 and 20 in equation (6_) the elec-

tric field is obtained as a function of position. This is presented in

figure 21. The normalized gradient is equal to_unity in the plane

= 27/64 independent of the current density j. As Brubaker points

out, this is only an approximation. However_ the maximum deviation from

unity is only 0.6 percent as the current density is varied from zero to

space-charge-limited values.

Ivey investigated the case of a cylindrical diode under partial

space-charge conditions (ref. 16). In this case Poisson's equation can-

not be integrated directly so a differential analyzer was used to obtain

a numerical solution. Without a rigorous proof_ Ivey then states that

it appears that the emitter field characteristic as shown in figure 19

is "universal" and applies also to other geometries, including those

with e_x_ternal emitters. He points out also that this seems to be a di-

rect consequence of Poisson's equation, and the only restrictions on the

applicability of figure 19 are those of negligible initial velocities

and an equipotential emitter (the same conditions imposed on the gener-

alized space-charge law).

THEORY OF PIERCE ELECTRODE DESIGN

The problem of design of electrode systems that will constrain an

accelerating ion beam to travel in a desired region has confronted sci-

entists and engineers for many years. Before 19_0 most electrode systems
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were designed using assumptions of either zero space charge or paraxial
flow. Since then muchprogress has been madetoward the development of
general methods for the design of electrodes for high-charge-density ion
beams. These methods can be divided into two categories:

(i) Analog methods such as the resistance network and electrolytic
tank

(2) Analytic solution of the space-charge equations and of Laplace's
equation in the region surrounding the ion beam

The most widely used analytic approach to accelerator design was
proposed by Pierce (ref. 17) in 1940. Although the Pierce method was
originally intended for rectilinear flow_ it has since been generalized
to include any type of curvilinear flow provided the boundary conditions
are regular (ref. iS). Whenthe solution to a particular type of space-
charge flow (such as those described in the first section of this report)
is found_ _t generally will fill all space. To form a beamit _s neces-
sary to take a segmentof this flow and replace the missing portion with
an electric field that will exactly match the conditions along the stream-
lines bounding the ion beam. This is done by arranging suitably shaped
electrodes around the ion beam. The electrode shapes are found by solv-
ing Laplace's equation in the charge-free space surrounding the ion beam
subject to the conditions of continuity of potential and normal gradient
across the beamedge.

Whenthe space-charge flow can be expressed in terms of sometype
of cylindrical coordinate system_as is frequently the case_ application
of complex variable theory becomesquite useful. This is demonstrated
in sketci_ (h). Curve C represents the boundary of a general curvilinear
ion beamthat extends to infinity normal to the paper. If an analytic
function can be found which transforms C into the u-axis_ then the po-
tential distribution along C and the gradient normal to C will be trans-
formed as sho_m.

F' "

L

't
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Since harmonic functions remain harmonic under conformal transformation_

a solution of Laplace's equation for the upper half of the W-plane can

be converted to the desired solution in the Z-plane by application of the

inverse transformation. A general solution of Laplace's equation in the

upper-half plane subject to Cauchy boundary conditions is given in refer-

ence 19:

%(u,v) : Re$c(W) + Imf NC(_)d {

0

(G7)

whe re

Re real part

Im imaginary part

potential distribution along v = 0

potential gradient normal to v = 01_]v=0\uV!

In the event that N C cannot be integrated explicitly as an ana-

lytic function of W, another technique described by Lomax (ref. iS)

may be used to obtain @(u,v).

It can be seen from equation (67) that @(u,v) can be written as

the real part of a complex function:

= + i,i, = ¢c(W) - i fw
0

(ss)

_ence_

dA d_c

dW - dW iNc(W) (69)

By application of the Cauchy-Riemann conditions

am b_ b_
dW -_u - _-_ : -Eu + iEv

_._here Eu and E v are the electric field components in the u and v

directions transformed from the Z-plane by the mapping function W = f(Z).
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Specifica!ly_ Eu corresponds to the electric field tangent to the beam
edge and Ev corresponds to the field normal to the beamedge.

Since Eu and Ev are derivable from an analytic function_ they
are differentiable_ and the differential equation of a line of electric
flux can be _rritten:

dv Ev
du - Su / 0 (70)

The equipotentials are orthogonal to the lines of force and are there-

fore determined by the equation

dv Eu

: zv ! o (71)

The condition Ev / 0 is always satisfied in cases of interest since

E v = -Nc(u ). By taking the real and imaginary parts of equation (69),

equation ('21) can be written:

I d_ C )_Re + ImN C (W

dv 7 (a dA)

- [ 1 = cot rg _-_du !m dwd_C ReNc (W

(72)

This is the differential equation specifying the equipotential surfaces.

While this technique is applicable to a large number of geometries_

there are some configurations of interest that cannot be handled in this

way. An example of one of these is rectilinear flow with circular cross

section. The solution of this particular problem will be discussed
later.

Electrodes for Rectilinear Flow (NC = O)

Rectilinear slab beam. - This is an application of the solution of

flow between infinite parallel planes to the formation of a finite slab

ion beam as shown in sketch (i).
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_-Electrodes

Beamedge

beam

__ Beamedge

Z-planeY

Equipotentials

% : c,x /5]
± _Boundary

_¢ |conditions

%  =oj

, X

Beam edge

Electrode configuration Mathematical model

(i)

From equation (25) the potential distribution along the beam edge is

% = czx4/3 (73)

cl = 6.94z×lo _ AI/3j2/3

There is no need for conformal mapping since the beam edge already co-

incides with the real axis. The boundary conditions to be satisfied are

sho_m in sketch (i). The potential gradient normal to the beam edge N C

is zero. Therefore, equation (67) has the particularly simple form:

= Se%(Z) = ClSeP/3

: CI(X2 + y2)2/3 cos@ tan -I _x) (74)

Equation (74) is developed in dimensional form for clarity. It is much

more convenient, however_ to nondimensionalize from the start. This may

be done by letting X = x/%, Y = y/Z, and X = ¢c/(CIZ&/3) where Z is

the unit of length. Then equation (73) becomes

× = x4/3 (Ts)
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Sketch (i) remains the same except that now the boundary conditions are:

Xc = X 4/5 (75)

_X I = 0NC= y=O

and equation (7_) becomes

X = Re(X + iY)$/5 = (X2 + Y2) 2/5 cos(_ tan -I {) (76)

Equipotentials defined by equation (76) are plotted in figure 22 and

tabulated in table IV. Note that the X = 0 electrode makes an angle

of 67.5 ° with the beam edge. This is called the Pierce angle_ and it

occurs in every geometry because_ as the ion emitter is approached

closer and closer_ the potential distribution approaches that of a plane

diode. The function X_/5 is multiple-valued and hence can give rise

to solutions that do not satisfy the boundary conditions. While it is a

simple matter to choose the proper solution in this case_ it is not so

simple in some of the cases that follow where the complex potential func-

tion is a power series. The coordinates listed in table YV agree with

the curves shown by Pierce in reference 17.

Beams of circular cross section. - The potential distribution has

the same form as equation (73), but in this case polar coordinates are

used and x is replaced by z:

@C = ClZ_/3

c1 = 6.s £xlo AI/3j /3 (77)

In 1955 a paper by Daykin (ref. 20) appeared in which a solution to this

problem was described. A sketch of the problem is sho_n as follows:

r
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Equation (77) can be nondimensionalized by writing

(°c 4/5

C1

(78)

_rhere a is the radius of the ion beam. Daykin showed that the poten-

tial distribution near the beam edge can be expressed by an infinite
series of the form

(z)4/311 fa_2 F [r_ _a_4 F _r_ "I
(79)

The functions F2 and F 4 are plotted in figure 23. Because of its

rapid convergence near the beam edge_ this series may be truncated at

three terms without introducing serious error. In order to extend the

solution away from the beam edge the asymptotic forms of the equipoten-

rials are computed. For this purpose it is convenient to define a new

coordinate system in terms of r and z. This is shown in sketch (k).

r

R

_ = (r2 + _,2)l/2

z

(k)

The equipotentials are then _Iritten in terms of Legendre functions P4/3

of order 4/3 as

_/s

× = (_) P_/3(oos 0) (_o)

Equation (80) is used to obtain electrode shapes far from the beam edge.

Equipotentials from equations (79) and (80) are plotted in figure 24(a)

and tabulated in tables V and VI. The transition region is sho_m by

dotted lines.

For a hollo_¢ ion beam another set of electrodes is required inside

the beam. Daykin derived an expression for these equipotentials for
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small r/b where b is the inner radius of the beam. This equation may
be _,Titten

r exp fg{z_2 [i (b) 4/5X] i 1

As in the previous case it is necessary to fair in part of the equipo-
tentials. Someof these are sho_ in figure 24(b) and tabulated in
table VII. The dotted portion joins the equipotentials from equa-
tion (SI) to the proper intercept on the inner beamedge defined by
equation (78). Until recently this was the only analytic solution of
the Pierce electrode problem for axisymmetric ion beams. Harker (ref. 21)
has recently developed a very general method whereby any axisymmetric
electrode design problem can be solved with the aid of a digital computer.

Cylindrical flow. - The application of converging and diverging flow

between coaxial cylinders is considered in this section. The two con-

figurations are shown in sketches (_) and (m).

Converging flow

\

)-Electrode s
;

!

!

Beam edge

edge

ntials

C

Beam edge

conditions

Etectrode shapes

(t)
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_ I_ Ele ctrode s

\A

Diverging flow

/fEquipotentials

Beam edge

_C = C2 (rB2)2/5_Boundary

NC _ = 0 J c°nditi°ns

Electrode shapes

(m)

Since the included angle of the wedge is _ the current per unit length

from equation (28) will be multiplied by the factor _/2_. The potential

distribution becomes

@C = C2 (r_2)2/5 {J_ }

(s2)

C2 = 6.94:2X104 A1/5\_] 2/5

This i_ nondimensionalizedbX letting R = r/r o and XC= %/(%r2o/3).
The nondimensional potential distribution becomes

x = (ms2)2/s (85)
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From equation (29) it follows that

(aS_) = an(in s)

Ln =i

and

Since the potential gradient

]4/3Bn(!n R)nJ (84)

NC normal to the ion beam is zer% the

expression for the potential outside of the beam is, from equation (67),

where

[E (101X(S,e) = Re Sn n Z n (85

Ln=l

Z _ r eiQ : Re i0 : R(cos 0 + i sin 0)
r r

o ©

Equation (55) can be res_ritten

whe re

X = (P2 + Q2)2/5 (5 11cos tan- (86

P = [in R + 0.1(in2R - 02 ) + 0.0167(In R 5 - 582 in R)

+ o.ooz42(Zn_ - 60z Zn s + 04 ) +

and

Q = [0 + 0.2 0 in R + 0.0167(50 in2R - 0 S)

+ o.ooz4s(40 Zn'_ - 4e5 Zn s) + .
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Equation (S6) was solved for several values of X on a digital computer.

Equipotentials for both converging and diverging flo_ are shown in fig-

ures 26 and 27 and are tabulated in tables VIII and !X_ respectively.

This case was also solved by Radley (ref. 22) for convergent flow, and

the results sho_,m in table VII agree with those sho_m in reference 22.

Electrodes for Curvilinear Flow (N C _ 0)

Circular flow. - The space-charge-limited-flow equations for which

the ion trajectories are concentric circular arcs are used here in the

design of a curved ion beam. This solution was obtained by Lomax in

reference 18. The potential distribution obtained from equation (54) is:

whe re

%C = C_r-2(sin _) _/5

t, J- tT)
The potential gradient normal to the beam is

(sT)

_@C 2C.(sin _) _/5- (88)= T rs

A sketch of the electrode structure is shown as follows:

ic] ;!r,:_ - r.... _'

ff \' ,l_,<......."r.,.

"b
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From the sketch it is seen that the problem can be divided in two parts:

r > b and r < a. Sketches for these two problems together with the

co_responding _oundary conditions are shown as follows: (The shaded

region is the region of interest in each case.)

¢'8 = a2 \

2C5 (sin 58] 4:/5_a = - 7 "_"J
r < a

a

C5 4/5
/

% : 7_sin 2]

2C 3

r>b

b

(o)

In this case it is necessary to map the beam edge onto the real axis.

Lomax shows that a mapping function that will do this is (for r = b)

Z = be iW (89)

The boundary conditions become, on v = O,

_c(u) =

_c(u) = 7

The formal solution of Laplace's equation in the upper half of the W-

plane is given by equation (67), which becomes
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W

_,,(u,v) = Re--_in + Im -'c-Isin d_ (90)

Explicit integration of the second term is not readily carried out_

therefore, the differential equation reDresenting the equipotentials

must be solved. By combining equations (69), (72), and (90), the dif-

ferential equation becomes

I A 1dv tan-if----, 2. j_J ,

du - cot \tan_ u/ - _ (91)

From the transformation equation (S9) it follows that

R r e-V
b

and

0 = U

Equation (91) becomes in the Z-plane

R_ = tan 0 - _ tan -I - cot
+

(92)

Equation (92) was integrated using the Runge-Kutta method, and some

typical equipotentials are shown for a/b = 0.7 in figure 27 and are

tabulated in tables X and XI. The inside equipotentials were found by

simply replacing b by a in equations (89) and (92). In figure 27

Xb = _(b2/Cs) and Xa : _(a2/C3). These results agree with those ob-

tained by Lomax in reference 18.

Electrodes for hyperbolic flow. Sketch (p) shows a segment of

hyperbolic flow bounded by the curves y = I/x and lO/x. This solu-

tion was obtained by Rosenblatt in reference 12.
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z- p18ne
z = x + iy

Y

Beamedge

/

(P)

The potential distribution along the beam edge as given in the space-
charge-flow section is

whe re

and

%_= i, i0

The solution of Laplace's equation outside the ion beam in the upper

part of the first quadrant (i.e._ outside the boundary X = i0) will be

obtained first. It is shown in reference 12 that a transformation that

will map the beam boundary onto the real axis is:

w :7 ( - 2ix) : u + iv

i x£u=_( _ :<s)

v=xy- h

(9s)
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A sketch of the transformed boundary is sho_cn as follows:

W-plane

W:u+iv

Boundary conditions

_c(u ) = _2C_(u2 + _z)l/z,,

Nc(_) = -sc4_(_z + ?z)-z/s

v

C

-2_i

(q)

The transformed boundary conditions are also

now be used:

<0(u_v) = Re[-2?,,(W2 + )',2)1/2] + !m/d

sho_m. Equation (67) may

-2c_z(_ 2 + zz)-z/2]a_
(94)

After integration and separation of the real and imaginary parts the

equipotentials in the W-plane are expressed by:

_(u,v) = -2C_ +_2_v2_2+_u2q_J2+_u2+_2_v2_}_J2

+ _ tan -I
v +_ u _

_{_u + _ u 2

V_

+ _2 _ v2) 2 (u2 + h 2 _ v2)}i/2_

(u2 + _2 v2)}i/2/
_ + 4u2v +

(95)
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This equation may be nondimensionalized by dividing equation (95) by

-Cd_. Substitution of the values of u and v from equation (95) yields

the expression for the electrode shapes in the (x,y) plane. Some of

these are plotted in figure 28. Equipotentials outside the beam edge

i Z2
= i may be obtained by the mapping W = _ (2i_ - ). The potential

function is identical to equation (95) except for minus signs in front

of the nonsquared u and v in the arc tangent term. Some electrode

shapes for this bounda_ 7 are also sho_m in figure 28.

Since there is no zero velocity surface in this configuration, it

may not have any practical application. Et may possibly be used to de-

flect an ion beam_ however.

Limitations of the Pierce Technique

The departure of analytically derived ion accelerators from physical

fact lies mainly in two areas. TTle first of these is that practical re-

quirements dictate modifications in the calculated electrode shapes.
These _difications manifest themselves in the curtailment of electrode

size and the insertion of apertures in the electrodes to pass the ion

beam. The i_erent instability in the solution of elliptic differential

equations with Cauchy boundary conditions on open boundaries works in

reverse to minimize the error caused by curtailment or modification of

electrode shape_ away from the boundary. This mean_ that_ while small

variations of potential along the boundary will cause increasingly larger

variations the farther away from the boundaryj conversely_ large varia-

tions far away from the boundary cause only small variations along the

boundary. This is readily observed in an electrolytic tank where a

tremendously wide variety of electrode shapes will give the proper po-

tential distribution along the beam edge to within the accuracy of the

measuring equipment, it is d_fficult to give exact numbers for the

magnitude of this effect other than to say that the error propagates

away from the boundary approximately as eKY_ where y is the distance

mea_ured from the boundary and K is a constant.

Aperture effect. - Insertion of apertures in the electrodes }_as two

deleterious effects on ion accelerator performance. The first is that

the aperture acts as an electrostatic lens }S_ich will tend to diverge an

accelerating ion beam. If multiple electrodes are being used_ this re-

sults in impingement of ions on the electrodes. Even if only one accel-

erating electrode is used_ the formation of a diverging ion beam will

result and may cause some impingement on this electrode. It is shown in

reference 2S that the focal length of an aperture is

f = (96)
Eb



$7

where g = i for slits_ g = 2 for circular apertures, and Eb is the
negative potential gradient on the upstream (or source) side of the
aperture. The meaning of this is demonstrated in sketch (r).

r_ _-- '7
0

q''= 0

,+u-
f r

(r)

The second effect is to reduce the ion current by increasing the

effective accelerating distance. Depending on the ratio of aperture

width to accelerating distance, experimentally observed current densities

can be s small fraction of the theoretically expected values.

Emitting surface irregularities. - The second area of departure of

the Pierce theory from physical fact lies in the assumptions regarding

initial conditions at the ion emitter. The usually assumed condition of

zero initial velocity along a perfectly smooth equipotential surface is

not met in practice, and it will be shown that considerable error can

arise as a result of this. Rather than treat these effects separately,

the nature of the ion trajectories in the neighborhood of a rough emitter

will be investigated, and dispersion due to transverse electric fields

will be compared directly with thermal spreading. In order to do this

it is first necessary to examine the potential distribution near a sur-

face irregularity. A sketch of the mathematical model is shown as

follows:

i



The surface irregularity is a cylindrical humpof radius Z, and it
is assumedthat at i00 units abovethe humpthe equipotentials are es-
sentially plane. An approximate expression for a flux line as computed
in appendix B is (u/Z) = (x/Z)Ii + !/[(x/Z)2 + (y/Z)2]1. The bounding
fl_x line, which originates at the point x = Z, y = O, is (u/Z) = 2.
This line intersects the line y = lOOt at x _ 2Z. Hence_the flux
line spreading due to the electrostatic field of the humpis Zkx_ Z.
It is shownin appendix B that thermal spreading ££xT at y = 100Z_
which is the product of the most probable thermal velocity and the ion
transit time_ can be written ££xT = 200Z_ where the effective
thermal potential is assumedto be 0. i volt. The ratio of electrostatic
to thermal spreading is

4xlO_
(9v)

The macroscopic electric field strength E in an ion rocket is defined

as the applied accelerating voltage divided by the accelerator spacing.

For emission-limited flow E usually has a value of between 105 and 107

volts per meter. From sketch (s) it can be seen theft the voltage across

the model Cio can be written Cpo = E(100Z), and the spreading ratio be-

comes

(98)
£_xT

Equation (98) is shown plotted in figure 39. It is seen from figure 29

that spreading due to the electrostatic field of a surface irregularity

can be of the same order of magnitude as thermal spreading. It should

be noted that this analysis is based on zero space charge and therefore

is only approximate.

Analysis of accidental misalinement of parallel planar electrodes. -

As pointed out by !vey (ref. i0)_ an accidental misalinement of parallel

planar electrodes can be analyzed as an application of the motion be-

tween two inclined planar electrodes. Consider the electrode arrangement

as sho_m in sketch (t):
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_; = ¢i0
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\ I
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(t)

_= 0
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One electrode is tilted about its center by an angle
lel condition and

from the paral-

s
d-

sin

The current per unit length when _ = 0 may be written

Z - 9 Co s2
(99)

and thus the ratio J/J_:0_ which gives the effect of the tilt_ is

J I{(_)

J =o _(+O2
(zoo)

Values from equation (i00) were calculated by Ivey for small angles of

and are presented in figure SO. For a rectangular emitter with an

aspect ratio of w/s = 1.24, the current per unit length is insensitive

to the angle of tilt about a line passing through its center and parallel
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to its side. Tvey also showedthe independenceof angular misalinement
in an arbitrary direction by the use of a disk-shaped emitter. The total
current for _ = 0 in this case is

J_=0 = _ Co 4s 2
(ZOl)

where D is now the diameter of the disk_ and the effect of electrode
tilt becomes

j I IJ.o 2sSi .) ]lj2
(IO2)

Values from equation (102) were also calculated by Ivey and are presented

in figure Si. It is seen that the variation of current for the aspect

ratio D/s = 1.42 is zero. For this optimum geometry (aspect ratio

D/s = 1.42) equation (i01) becomes

,1/2
6.255×10-12{ 2-_] %5/2J_=o =

\m]
(io3)

and the behavior of J/J_:o for the above optimum geometry is shown in

figure 31. It is seen that even a large angle of tilt does not change

the total current appreciably. This, of course, does not mean that the

ion optics _dll not be affected, and in an ion rocket the ion impinge-

ment on the electrodes must be reduced to nearly zero for long-duration

operation. Therefore, electrode alinement is still quite critical.

CONCLUDING REMARKS

Three methods for the analytic solution of the space-charge-flow

problem appear in the literature_ in which certain properties of the

flow are prescribed. These are (i) initial and final equipotentials,

(2) velocity and acceleration, and (5) trajectories and action function.

None of these methods is generally applicable at present. Of the three

methods, the trajectory-action function method appears the most versatile

for the design of electrostatic rocket engine accelerators.

The existing solutions of space-charge flow have been described;

and the parameters pertinent to the design of electrostatic rocket engine

accelerators have been given for the following geometries: (i) paraxial
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flow, (2) flow between coaxial cylinders, (5) flow bet_._eenconcentric
:_phere:_, (L_) circular flo_._T, (5) hyperbolic flow, (6) flow between in-

clined !_lanes, and (7) flow between coaxial cones.

Electrode shapes determined by the method of Pierce have been given

for the following geometries: (i) rectilinear flow with rectangular

cros_ section, (2) paraxial flo_._with circular cross section, (S) con-

vergent flo_._between coaxial cylinders, ($) divergent flo_ bet_,_een co-

axial cylinders, (S) circular flow, and (6) hyperbolic flow.

Limitations of the space-charge-flow and electrode design theories

have been discussed. One is the aperture effect and another is the ef-

fect of irregularities on the ion emitting surface. Surface irregular-

ities have been demonstrated to cause lateral ion velocity components of

the same order of magnitude as thermal ion velocities.

Le_._is Re_earch Center

_ational Aeronautics and Space Admin_ stration

Cleveland, Ohio, August 20, 1962
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APPENDIX A

SYMBOLS

(mks units used throughout.)

molecular weight/ionic charge (ionic charge may be greater

than one in multiply charged ions)

inner radius of circular ion beam; outer radius of ion

beam vith circular cross section

outer radius of circular ion beam; inner radius of ion
beam _rith circular cross section

h2h3/h_; also ion beam edge

constants identified in text

diameter of disk emitter

S/sin _, for electrode tilt analysis

electric field strength_ volts/meter

unit electronic charge, 1.602×10 -19 coulomb

dimensionless functions of r/a defined in ref. 16

function defined in eq. (50)

function defined in eq. (45)

gravitational conversion factor_ 9.806 meters/sec 2

function defined in eq. (i00)

scale factors in curvilinear coordinates_

2 d_2+ h_d_2+ h_d_2ds 2 = hI

imaginary part

total current_ amp
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J

%

m

N C

q

R

Re

r

r
o

S

ds

U_ V

V

VX, Vy, V Z

vr _V0

v

V

W

•t,7

X,Y

current per unit length, amp/meter

current density, amp/meter 2

accelerator height, meters; also unit of length

particle mass_ kg

potential gradient normal_ to boundary C

charge, coulombs

r/r o, r/r a, r/r b

real part

radius as in spherical and cylindrical polar coordinates

emitter radius; also initial radius of trajectory in flow

between inclined planes; also inner radius in circular

flow engine

accelerating distance for electrode tilt analysis

function defined in eq. (S8)

differential displacement along a trajectory

coordinates in W-plane (W = u + iv)

ion velocity

velocity components in Cartesian coordinates

velocity components in polar coordinates

acceleration vector

most probable thermal velocity

action function, meterS/sec; also complex number u + iv

tilt analysis

nondimensional Cartesian coordinates
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x_ y_ z

Z

Z

13

P

T

6 o

0

A

P

¢

@C

(PO

X

Cartesian coordinates

function defined in eq. ($9)

x + iy

x - iy

Lan_nuir function for spheres; angle between inclined

planes; arbitrary fixed angle

conical half-angles

Langmuir function for cylinders

o

angle between ion trajectory and flux line in flow between
coaxial cones

permittivity of free space_ 8.855Xi0 -12

cou!omb/( ne_on )(meter 2 )

curvil_near coordinate defining trajectories

angular displacement_ deg

complex potential function_ @ + iY

hyperbolic trajectory parameter

curvilinear coordinate defining action function

charge density_ coulomb/meter S

_o - _

potential distribution along beam boundary

angular displacement in spherical coordinates; also poten-

tial_ volts

emitter potential, volts

nondimensional potential distribution
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Y

Superscripts:

flux line

angle bet_._eenion trajectory and flux line for flow between
coaxial cones

differentiation with respect to variable e
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APPENDIXB

APPROXIMATEi0N BEAMDISPERSIONDUETOSLrRFACEROUGHNESS

In this appendix the electric field in the neighborhood of a cylin-
drical hump_i!! be obtained. Following that the transit time of an ion
through the diode will be calculated_ and an expression for thermal
spreading_ which is the product of the most probable thermal velocity
and the ion transit time_ will be sho_m.

iy iv

= 0 lOOl

_ = q_o
x u

(u)

The surface is an infinite plane containing a cylindrical hump of radius

Z. It is assumed that at a distance y = IOOZ the equipotential sur-

faces are plane. By the conformal transformation w = z + i/z the sys-

tem is converted into two plane electrodes separated by a distance of

99.99 Z. This is shov_ on the right side of sketch (u). The space-

charge-free potential distribution in the W-plane is

} (Sl)_(u,v) = _o i 99.99 t

The electric field is obtained by differentiation of equation (BI) with

respect to v:

E (sz)
dv 99.99 I
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Returning to the right side of sketch (u) the flux lines are given
by u/Z = constant. From the transformation equation the expression for
u/Z is

uxl 1T=Y 2 _ (B3)

This equation is used in the computation of spreading due to the electric

field of a surface irregularity.

In the computation of transit time through the diode in sketch (u)

(left side), it is assumed that the electric field is constant; that is,

cPo
E = loo---T (s,_)

The equation of motion of an ion is

= qq:_om d2y qE -
dt 2 100_

Integration of equation (BS,) subject to the initial conditions of

d_y _ 0 at t = 0
dt

(B5

and

yields

y=O at t =0

At y = IOOZ

qgo tZ
Y - 200mZ

the transit time is

t = IOOZ 2_

(B6

(B7
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From reference 2_ it is seen that the most probable thermal velocity is

_zhere
volt ).

is the meanthermal potential (usually taken to be about 0. i
Thermal spreading is then the product of equations (BT) and (BS

AXT= 200Z_o = 200Z O._ (B9
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APPENDIXC

RESCALINGOFNOMOGRAMS

The nomogramsshownin this report maybe easily rescaled to allow
computations beyond the range of one or more of the variables. Consider,
for example, the nomogramin figure i, which represents the space-charge-
flow equation for a plane diode. The equation is

j : -8 - :4,)s/2x-2 (26)

The ranges of the various scales are

i0 < A < iO _

2 X 10 < J < 10 5

10 -4 < x < 10 -2

102 < (,<, - cp) < l04

Suppose that it is desired to calculate the current density for heavier
<

particles, say up to i0 "_ amu. This means that the new range of the A

scale will be from l0 S to l0 S amu. it is seen from equation (26) that,

if (0o -P) and x are held constant and if A is multiplied by 102 ,

then J will be divided by i0. That is, there exists a scale factor

associated with A _ich, when multiplied by the range of J, will give

the new range. In this case, KA = I0 -I and the new range of J will

be

2 < J < 102

Usually it is necessary to rescale several variables simultaneously.

This may be done in a similar manner. Suppose, for instance, that the

desired ranges are to be changed in accordance with the following list:

I0 < A < i0 S -_ l0 S < A < i0 S

2 x i0 < J < i05 -_ ? < J < ?
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10-4 < x < 10-2 _ 10-2 < x < i0 °

lo2_< (%- m)_<lO4 -.3_o__< (%- _) <_lO6

Referring again to equation (26) it is seen that scaling factors may be

assigned to each variable. For instance_ it was sho}m that the scaling

factor KA due to a hundredfold increase in A is i0 -I. The net scal-

ing factor applied to J will be the products of the individual factors.
These are

K A = i0 -I

and finally

K X = i0-4

Kq) : l0 S

Therefore_ the new range of the J scale will be

2XI0 -I < J < i0
m
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TABLE II. - LANGMUIR _INCTION FOR CONCENTRIC CYLINDRICAL FLOW

r/r O

0.01000

.01111

.01250

.01429

.01667

.02000

.02500

.03333

.05000

.05556

.06250

.07143

.08533

.i0000

.i0530

.iiii0

.11760

.12800

.13330

.14290

.IS380

.16670

.17240

.17860

.18520

.19230

.20000

.20830

.21740

.82730

.23810

j32

1174.9000

i018.5000

867.1100

721.4300

582.1400

450.23O0

527.0100

214.4200

115.6400

97.9970

81.2030

65.3520

50.5590

36.9760

33.7910

50.6980
27.7010

2%.8050

22.0150

19.3370

16.7770

14.3430

13.4070

12.4930

11.6010

10.7530

9.8887

9.0696

8.2765

7.5096

6.7705

r/to

0.2500 6.06010

.2632 5.37950

.2778 4.72980

.2941 %.11260

.5125 3.52930

.3333 2.98140

.3448 2.72140

.3571 2.47080

.3704 2.23010

.3846 1.99950

.4000 1.77920

.4167 1.56970

.4348 1.37120

.4545 1.18400

.4762 1.00860

.5000 .84540

.5263 .69470

.5556 .55720

.5882 .%5320

.6250 .32330

.6667 .22820

.7143 .14856

.7692 .08504

.8333 .03849

.8696 .02186

.9091 ,00980

.9259 .00630

.9434 .00356

.9615 .00159

.9804 .00060

.9901 .00010

1.0000 .00000

r/ro B8 r/r) _2

1.00 0.00000 4

1.01 .00010 %

1.02 .00039

1.04 .00149

1.06 .00524

1.08 .00557

i.i0 .00842

1.15 .01747

1.20 .02875
1.30 .05589

!.40 .08672

1.50 .i1934

1.60 .15250
1.70 .18540

1.80 .21770

1.90 .24910

2.00 .27930

2.10 .30830

2.20 .33610

2.30 .36260

2.40 .38790

2.50 .41210

2.60 .43510

2.70 .45710
2.80 .%7800

2.90 .49800

3.00 .51700
3.20 .55260

5.40 .58510

3.60 .61480

3.80 .64200

.0 0.6671

.2 .6902

4.4 .7115

4.6 .7313

4.8 .7496

5.0 .7666

5.2 .7825

5.4 .7975

5.6 .8111

5.8 .8241

6.0 .8362

6.5 .8635

7.0 .8870

7.5 .9074

8.0 .9255

8.5 .9410

9.0 .9548

9.5 .9672

10.0 .9782

12.0 1.0122

14.0 1.0352

16.0 1.0513

18.0 1.0630

20.0 1.0715

30.0 1.0908

40.0 1.0946

50.0 1.0936

60.0 1.0910

70.0 1.0878

80.0 1.0845

90.0 1.0813

i00.0 1.0782
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TABLEIii. - LANGMUIRFUNCTIONFORCONCENTRICSPHERICALFLOW

r/r o

0.01000
.01111
.01250
.01429
.01667

r/r O m2 r/ro _2 r/ro _2

.02000

.02500

.03355

.05000

.05556

.06250
.07143
.08533
.i0000
.10530

.Iiii0

.11760

.12500

.13330

.14290

.15830

.16670

.17240

.17860

.18520

.19250

.20000

.20850

.21740

.22750

.25810

1144.000

974.100

815.700

665.300

525.600

5,95.500

Z79.6O0

178 •200

93.240

78.560

64.740

51.860

59.980

29.190

26.680

24.250

21.890

19.620

17.440

15.550

13.350

11.460

10.750

i0.010

9.515

0.2500

.2832

.2778
•2941

.5125

.5333

.3448

.3571

•3704

.3846

.4000

.4167

.4548

•4545

.4762

.5000

.5263

.5556

.5882

.6250

4.9680 1.00 0.0000

4.4290 1.05 .0025

5.9150 i.i0 .0086

S.4210 1.15 .0180

2.9540 1.20 .0299

2.5120 1.25 .0457

2.5020 1.50 .0591

2.0980 1.55 .0756

1.9010 1.40 .0951

1.7120 1.45 .lll4

4.2 0.979

4.4 1.022

4.6 1.063

4.8 1.103

5.0 1.141

5.2 1.178

5.4 1.213

5.6 1.247

5.8 1.280

6.0 1.311

1.5310 1.50 .1502 6.5 1.585

1.5580 1.60 .1688 7.0 1.453

1.1950 1.70 .2080 7.5 1.Sl6

1.1036 1.80 .2480 8.0 1.575
• 8880 1.90 .2870 8.5 1.680

8.636

7.976

7.336

6.712

6.109

5.528

.6667

.6897

.7185

.7407

.7692

.80OO

.8533

.8696

.9091

.9524

1.0000

.7500 2.00 .3260 9.0 1.682

.6210 2.i0 .3640 9.8 1.731

.5020 8.20 .4020 lO.O 1.777

• 5940 2.50 .4380 12.0 1.958

.2968 2.40 .4740 14.0 2.073

•2118 2.50 .5090

.1740 2.60 .5430

.1596 2.70 .5760

.1084 2.80 .6080

.0809 2.90 .6590

16.0 2.189

18.0 2.289

20.0 2.378

30.0 2.713

40.0 2.946

•0571 3.00 .6690 50.0 3.120

.0372 3.20 .7270 60.0 3.261

.0213 3.40 .7850 70.0 3.380

• 0096 5.60 .8560 80.0 5.482

• 0024 3.80 .8860 90.0 5.572

• 0000 4.00 .9340 lO0.O 3.652
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TABLE IV. - ELECTRODE COORDINATES

FDR RECTILINEAR SLAB I0N BEAM

Y X

X= 0

0 0

.i .04141

.2 .08283

.3 .12425

.4 .16567

.5 .20708

.6 .2¢850

.7 .28992

.8 .55155

.9 .57275

1.0 .41416

2.0 .82855

5.0 1.24250

4.0 1.65670

5.0 2.07080

6.0 2.48500

7.0 2.89920

8.0 5.51550

9.0 5.72750

10.0 4.14160

X

X= 0.4

0

.50626

.51578

.55072

.55009

.57298

.59864

.62648

.65607

.68708

.7192%

1.07580

1.46010

1.85490

2.25520

2.65870

3.06440

5.47150

5.87970

4.28870

X

X=I.O

1.0000

1.0017

1.0066

1.0147

1.0258

1.0595

1.0558
1.0745

1.0947

1.1169

1.1406

1.4558

1.7795

2.1477

2.5285

2.9167

5.5100

5.7067

%.1061

4.5075
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TABLE V. - ELECTRODE COORDINATES FOR

RECTILINEAR ION BEAM WITH CIRCULAR

CROSS SECTION NEAR BEAM EDGE

R

i .00

i .25

i .50

i .75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75
4.00

4.25

4.50

4.75

5.00

z/a

X = 0 X = 0.5 X = 1.0 X = 2.0

0 0.595

.611

.649

.699

.751

.804

.852

.898

.932

.951

1.000

1.009

1.033

1.072

1.115

i .161

i .211

i .259

i. 310

i .355

.

i.

i.

i.

i.

683

687

702

727

756

1.791

1.830

1.872

1.915

1.959

1.400 2.007

1.441 2.052

1.482 2.099

1.512 2.146

1.540 2.189

1.551 2.237

1.540 2.278
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TABLEVI. - ELECTRODECOORDINATESFORRECTILINEARIONBEAM

WITHCIRCULARCROSSSECTIONAWAYFROMBEAMEDGE

z/a r/a z/a r/a z/a r/a z/a r/a

X = 0 X = 0.5 X = 1.0 X = 2.0

0.2728
.5456
.8184

I .0910
i .3640

1.6368

1.9096

2.1824

2.4550

2.7280

0.962

1.924

2.886

3.848

4.810

5.772

6.734

7.697

8.659

9.621

0.659

.870

1.108

1.356

1.609

1.873

2.151

2.393

2.660

2.929

0.751

1.801

2.788

3.767

4.733

5.705

6.666
7.633

8.599
9.561

1.000

1.173

1.384

1.611

1.849

2.102

2.347

2.599

2.857

5.120

0

1.619

2.667

5.660

4.644

5.625

6.590

7.564

8.536

9.505

1.730

1.904

2.104

2.317

2.541

2.777

3.010

5.251

3.504

0.994

2.314

5.400

4.429

5.429

6.425

7.409

8.591
9.571
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TABLE VII. - INhTER ELECTRODE COORDINATES

FOR HOLLOW CYLINDRICAL ION BEAM

I

z/bi

I

0

5

.%

.5

.6

.7

.8

.9

1.2

1.%

1.6

1.8

0

1.0

2.0

3.0

%.0

r/b

X = 0 X : 0.5 X = 1.0 X : 2.0

al. 00000

0

0

.5798%

.50662

.%0%5%

.29523

.19691

.12003

.06687

.05%05

.0158%

.00093

.00009

.60653

.0O67%

bl.o0000

.9%155

1.09360

1.10880

1.00150

.8125%

.59457

.39410

.23669

.12904

.01181

.00150

.00013

.00001

.60655

.06595

0

0

cl.O0000

1.52880

2.36070

5.05950

5.39730

5.55290

2.9%820

2.52260

1.645%0

1.05100

.1%981

.02501

.0028%

.00022

.60653

.60655

.00001

0

dl.o0000

%.03090

ii.00100

22.83%00

39.09300

57.09100

72.%1500

80.67000

79.51700

69.72500

2%.12400

6.98090

1.33890

.17162

.60653

.5%598

.01%80

0

0

aAt beam edge

bAt beam edge

fig. 2%(b)).

CAt beam edge

fig. 2%(b)).

dAt beam edge

fig. 24(b)).

z/b : 0 (see fig. 2_(b)).

z/b = 0.59%6 (see

z/b = 1.000 (see

z/b = z.68z8 (see
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TABLE VIII. - CONCLUDED. ELECTRODE COORDINATES FOR

CO_v_ERGING CYLINDRICAL FLOW (r/r o < i)

x=o

O.
6.960927[E-03

1.3918603E-02

2.0869779E-02

2.7811222E-02

3.4739711E-02
4.1652042E-02
4.8545030E-02

5.5415553E-02
6.2260466E-02

6.907672[E-02

[.0262334E-0I

1.3501944E-01

1.6594096E-01

1.9510403E-01

2.2226539E-01
2.4722046E-0[
2.6979982E-01

2.8986560E-01

3.07308IIE-01

3.2204290E-01

3.3400864E-0!
3.4316571E-01
3.4949506E-0l
3.5299808E-01

3.5369632E-OI

3.5163151E-0l

3.4686594E-01
3.3948213E-O!
3.2958314E-01

3.1729210E-01

3.0275LSOE-OI
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I m,_2 q(_o - _) (See al:pendix C forFigure 2. - Nomographic solutlcn cf [ ....

rescallng.)
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F:tsure S. - DIvercln 6 #low between concent, tqc sphei'es. J = 6.97xlO-7A-l'/2(_: c - e)3'"2_ -9

for r > ro_ note that ] = j/4_z "2. (See appendix C £oi. Pescailn C. )
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